Hedgehog Signaling Regulates Nociceptive Sensitization

نویسندگان

  • Daniel T. Babcock
  • Shanping Shi
  • Juyeon Jo
  • Michael Shaw
  • Howard B. Gutstein
  • Michael J. Galko
چکیده

BACKGROUND Nociceptive sensitization is a tissue damage response whereby sensory neurons near damaged tissue enhance their responsiveness to external stimuli. This sensitization manifests as allodynia (aversive withdrawal to previously nonnoxious stimuli) and/or hyperalgesia (exaggerated responsiveness to noxious stimuli). Although some factors mediating nociceptive sensitization are known, inadequacies of current analgesic drugs have prompted a search for additional targets. RESULTS Here we use a Drosophila model of thermal nociceptive sensitization to show that Hedgehog (Hh) signaling is required for both thermal allodynia and hyperalgesia following ultraviolet irradiation (UV)-induced tissue damage. Sensitization does not appear to result from developmental changes in the differentiation or arborization of nociceptive sensory neurons. Genetic analysis shows that Hh signaling acts in parallel to tumor necrosis factor (TNF) signaling to mediate allodynia and that distinct transient receptor potential (TRP) channels mediate allodynia and hyperalgesia downstream of these pathways. We also demonstrate a role for Hh in analgesic signaling in mammals. Intrathecal or peripheral administration of cyclopamine (CP), a specific inhibitor of Sonic Hedgehog signaling, blocked the development of analgesic tolerance to morphine (MS) or morphine antinociception in standard assays of inflammatory pain in rats and synergistically augmented and sustained morphine analgesia in assays of neuropathic pain. CONCLUSIONS We demonstrate a novel physiological role for Hh signaling, which has not previously been implicated in nociception. Our results also identify new potential therapeutic targets for pain treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila

Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that ...

متن کامل

The Lipid Kinase PIP5K1C Regulates Pain Signaling and Sensitization

Numerous pain-producing (pronociceptive) receptors signal via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. However, it is currently unknown which lipid kinases generate PIP2 in nociceptive dorsal root ganglia (DRG) neurons and if these kinases regulate pronociceptive receptor signaling. Here, we found that phosphatidylinositol 4-phosphate 5 kinase type 1C (PIP5K1C) is expressed at h...

متن کامل

Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization.

Calcium/calmodulin-dependent protein kinase II (CaMK II) is found throughout the CNS. It regulates calcium signaling in synaptic transmission by phosphorylating various proteins, including neuronal membrane receptors and intracellular transcription factors. Inflammation or injuries to peripheral tissues cause long-lasting increases in the responses of central nociceptive neurons to innocuous an...

متن کامل

Drosophila caspase activity is required independently of apoptosis to produce active TNF/Eiger during nociceptive sensitization

Tumor necrosis factor (TNF) signaling is required for inflammatory nociceptive (pain) sensitization in Drosophila and vertebrates. Nociceptive sensitization in Drosophila larvae following UV-induced tissue damage is accompanied by epidermal apoptosis and requires epidermal-derived TNF/Eiger and the initiator caspase, Dronc. Major gaps remain regarding TNF function in sensitization, including th...

متن کامل

Cytokine Signaling Mediates UV-Induced Nociceptive Sensitization in Drosophila Larvae

BACKGROUND Heightened nociceptive (pain) sensitivity is an adaptive response to tissue damage and serves to protect the site of injury. Multiple mediators of nociceptive sensitization have been identified in vertebrates, but the complexity of the vertebrate nervous system and tissue-repair responses has hindered identification of the precise roles of these factors. RESULTS Here we establish a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011